Optimization of Dogleg Severity in Directional Drilling Oil Wells Using Particle Swarm Algorithm (Short Communication)

نویسندگان

  • Siamak Hosseini Mechanical Engineering, Islamic Azad University, Ahwaz Branch, Ahvaz, Iran
چکیده مقاله:

The dogleg severity is one of the most important parameters in directional drilling. Improvement of these indicators actually means choosing the best conditions for the directional drilling in order to reach the target point. Selection of high levels of the dogleg severity actually means minimizing well trajectory, but on the other hand, increases fatigue in drill string, increases torque and drag, particularly in the rotation mode. Therefore the aim is to define the index in an optimal range which meets both requirements. Particle swarm algorithm was used for optimization the dogleg severity. The final measured depth and directional well pattern were considered as an objective function and Build & Hold, respectively. Then the fatigue caused by the stresses exerted on the drill string, evaluated by modified Goodman equation simultaneously. The relationship between path parameters and the obligation to reach a target point in directional wells, converts the problem into a constrained optimization problem. Comparing the proposed directional drilling path in a drilled well in the Ahwaz oilfield with the responses obtained from the particle swarm algorithm indicated that the particle swarm algorithm is converged in finding the shortest path, and on the other hand, it decreases the time of using directional drilling equipment due to the selection of the proper dogleg severity. Note that it is likely to add other constraints to the optimization process which indicates the particle swarm algorithm efficiency in solving these problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

optimization of dogleg severity in directional drilling oil wells using particle swarm algorithm (short communication)

the dogleg severity is one of the most important parameters in directional drilling. improvement of these indicators actually means choosing the best conditions for the directional drilling in order to reach the target point. selection of high levels of the dogleg severity actually means minimizing well trajectory, but on the other hand, increases fatigue in drill string, increases torque and d...

متن کامل

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

ISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM

One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...

متن کامل

optimization of icds' port sizes in smart wells using particle swarm optimization (pso) algorithm through neural network modeling

oil production optimization is one of the main targets of reservoir management. smart well technology gives the ability of real time oil production optimization. although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. in this research, optimum port sizing of inflow control devices (icds) which are passive control valves ...

متن کامل

OPTIMIZATION OF PLACEMENTVOLTAGE OF PIEZOELECTRIC ACTUATORS ON AN L-SHAPE BEAM USING PARTICLE SWARM OPTIMIZATION ALGORITHM

In this paper, controlling the location of the tip of an L-shape beam under gravity field is investigated. The beam is covered with piezoelectric patches. The gravity filed moves the tip of beam downward and the actuators with induced voltage move the tip to the previous location. to optimize the best location and voltages for actuators, the particle swarm optimization algorithm code is develop...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 48  شماره 2

صفحات  139- 151

تاریخ انتشار 2014-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023